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1 The Adjoint Representation

Via derivation, the conjugation map G → G, h 7→ ghg−1

induces a representation of a Lie group G and its Lie algebra
g:

Lemma 1.1 (The Adjoint Representation of G) Let G ⊂
GL(n,K) be a matrix-group with lie-algebra g. Then the map

Ad : G → GL(g), A 7→ AdA

with
AdA(B) = ABA−1

is a representation of G on its Lie-Algebra g.

Lemma 1.2 (The Adjoint Representation of g) Let g be
a Lie-Algebra. Then the map

ad : g → GL(g), A 7→ [A, ·]

defines a representation of g on itself.

The adjoint representations are well behaved with the
exponential-map, in the sense that

Ad ◦ exp = exp ◦ ad.

2 Compact, Connected Lie Groups

Let G be a compact, connected Lie group. Then the adjoint
action restricts to SO(dim(G)):

Theorem 2.1 Let G be a compact, connected Lie group with
Lie algebra g. Then, after choosing a suitable basis on g, the
adjoint representations of G and g become

Ad : G → SO(dim(G)), ad : g → so(dim(G))

respectively.

The proof uses that every compact Lie group can be embedded
in a U(n) for some n ∈ N after choosing a suitable basis. Said
basis is orthonormal with respect to the Ad-invariant inner
product (·, ·) : u(n)× u(n) → R, (A,B) = −trAB.

We know more about the adjoint representation:

Lemma 2.1 Let G be a compact, connected matrix group.
Then its adjoint action Ad on g has a compact, connected
image. Furthermore, its kernel is given by

ker (Ad) = Z(G) = {h ∈ G | hg = gh ∀g ∈ G}.

3 Root Space Decomposition

Given a compact, connected Lie group G, let T ⊂ G be a
maximal torus with generator g0. Then the action of T on g
is determined by Adg0 ∈ SO(dim(G)). Indeed, we have

Adg0 ∼

{
diag(R(θ1), ..., R(θm)), if dim(G) is even

diag(R(θ1), ..., R(θm), 1), if dim(G) is odd

for some natural number m and 2d rotation matrices R. For
each k = 1, ..,m, define

γ̃k : T → SO(2), gr0 7→ R(rθk).

Then its derivative

γk := Didγ̃k : t → R

defines a root of G with respect to T if γk is non-trivial. We
define the corresponding root space g(±γk) ⊂ g as the real
equivalent of the complex space⋂

t∈t

Ker(Adexp(x) − eiγk(x)).

When γ is non-trivial, we have dim g(±γ) = 2m±γ for a
natural number m±γ called the multiplicity. If we further-
more set

g(0) = {x ∈ g | ∀g ∈ T, Adg(x) = x},

then there is the following decomposition of g:

Theorem 3.1 Let G be a compact, connected Lie group with
Lie algebra g. Then there is an R-linear direct sum decompo-
sition with respect to the inner product (·, ·),

g =
⊕

±γ root pair

g(±γ) = g(0)⊕
⊕

±γ non-trivial root pair

g(±γ).

(1)
The decomposition is called root space decomposition of g.

Remember the Weyl group WG(T ) = NG(T )/T acts on t∗

by gT · γ(x) = γ(Adg−1(x)). If γ is a root, then so is gT · γ.
This gives us the following theorem:

Theorem 3.2 Let α, β be roots of G with respect to the max-
imal torus T . Then the following are true:

1. For non-trivial α and w ∈ Wg(T ), the multiplicities of
wα and α agree, i.e., mαw = mw; in fact, these multi-
plicities are 1.

2. For non-trivial α, the only roots which are non-zero mul-
tiples of α are ±α.

3. [gα, gβ ] = {0} unless α+β is a root, and then [gα, gβ ] =
gα+β if α+ β is non-trivial, while {0} ≠ [gα, g−α] ⊂ g0.


