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1 The Adjoint Representation

Via derivation, the conjugation map G — G, h — ghg™!
induces a representation of a Lie group G and its Lie algebra
g:

Lemma 1.1 (The Adjoint Representation of G) Let G C

GL(n,K) be a matriz-group with lie-algebra g. Then the map

Ad: G — GL(g), A Ady

with
Ada(B) = ABA™!

is a representation of G on its Lie-Algebra g.

Lemma 1.2 (The Adjoint Representation of g) Letg be
a Lie-Algebra. Then the map

ad: g — GL(g), A~ A, ]

defines a representation of g on itself.

The adjoint representations are well behaved with the
exponential-map, in the sense that

Adoexp =expoad.

2 Compact, Connected Lie Groups

Let G be a compact, connected Lie group. Then the adjoint
action restricts to SO(dim(G)):

Theorem 2.1 Let G be a compact, connected Lie group with
Lie algebra g. Then, after choosing a suitable basis on g, the
adjoint representations of G and g become

Ad: G — SO(dim(G)),  ad: g — so(dim(G))

respectively.

The proof uses that every compact Lie group can be embedded
in a U(n) for some n € N after choosing a suitable basis. Said
basis is orthonormal with respect to the Ad-invariant inner
product (-,-): u(n) x u(n) = R, (A, B) = —trAB.

We know more about the adjoint representation:

Lemma 2.1 Let G be a compact, connected matriz group.
Then its adjoint action Ad on g has a compact, connected
image. Furthermore, its kernel is given by

ker(Ad) = Z(G)={h € G | hg = ghVg € G}.

3 Root Space Decomposition

Given a compact, connected Lie group G, let T C G be a
maximal torus with generator gg. Then the action of T on g
is determined by Adg, € SO(dim(G)). Indeed, we have

4y ~ {diag(R(Gl), s R(0)),

if dim(G) is even

diag(R(61), ..., R(Om), 1), if dim(G) is odd

for some natural number m and 2d rotation matrices R. For
each k = 1,..,m, define

Vi : T—)SO(Q), gg »—>R(r9k)
Then its derivative

Vi = DigYp: t = R

defines a root of G with respect to T if 7, is non-trivial. We
define the corresponding root space g(£7;) C g as the real
equivalent of the complex space

ﬂ Ker(Adexp(z) — ei’yk(m)).
tet

When 7 is non-trivial, we have dim g(+vy) = 2m4, for a
natural number m4., called the multiplicity. If we further-
more set

9(0) ={zeg | VgeT, Ady(x) =z},
then there is the following decomposition of g:

Theorem 3.1 Let G be a compact, connected Lie group with
Lie algebra g. Then there is an R-linear direct sum decompo-
sition with respect to the inner product (-,-),

D D

+v root pair +~ non-trivial root pair

o(£y) =9(0) @ a(£7).

(1)

The decomposition is called root space decomposition of g.

g:

Remember the Weyl group W (T') = Ng(T')/T acts on t*
by gT - v(x) = v(Ad,-1(x)). If v is a root, then so is g7 - 7.
This gives us the following theorem:

Theorem 3.2 Let o, 5 be roots of G with respect to the max-
imal torus T'. Then the following are true:

1. For non-trivial o and w € Wy(T'), the multiplicities of
Yo and o agree, i.e., Maqy = My; in fact, these multi-
plicities are 1.

2. For non-trivial o, the only roots which are non-zero mul-
tiples of o are £au.

3. [8a,08] = {0} unless a+ B is a root, and then [gqa, 98] =
Gatp if a+ B is non-trivial, while {0} # [ga, 9—a) C go-



