1 The Adjoint Representation

Via derivation, the conjugation map $G \to G$, $h \mapsto ghg^{-1}$ induces a representation of a Lie group G and its Lie algebra \mathfrak{g} :

Lemma 1.1 (The Adjoint Representation of *G*) Let $G \subset$ $GL(n, \mathbb{K})$ be a matrix-group with lie-algebra \mathfrak{g} . Then the map

$$Ad: G \to GL(\mathfrak{g}), \quad A \mapsto Ad_A$$

with

$$Ad_A(B) = ABA^{-1}$$

is a representation of G on its Lie-Algebra \mathfrak{g} .

Lemma 1.2 (The Adjoint Representation of \mathfrak{g}) Let \mathfrak{g} be a Lie-Algebra. Then the map

ad:
$$\mathfrak{g} \to GL(\mathfrak{g}), \quad A \mapsto [A, \cdot]$$

defines a representation of \mathfrak{g} on itself.

The adjoint representations are well behaved with the exponential-map, in the sense that

$$\mathrm{Ad} \circ \exp = \exp \circ \mathrm{ad}.$$

2 Compact, Connected Lie Groups

Let G be a compact, connected Lie group. Then the adjoint action restricts to $SO(\dim(G))$:

Theorem 2.1 Let G be a compact, connected Lie group with Lie algebra \mathfrak{g} . Then, after choosing a suitable basis on \mathfrak{g} , the adjoint representations of G and \mathfrak{g} become

$$Ad: G \to SO(\dim(G)), \qquad ad: \mathfrak{g} \to \mathfrak{so}(\dim(G))$$

respectively.

The proof uses that every compact Lie group can be embedded in a U(n) for some $n \in \mathbb{N}$ after choosing a suitable basis. Said basis is orthonormal with respect to the Ad-invariant inner product $(\cdot, \cdot): \mathfrak{u}(n) \times \mathfrak{u}(n) \to \mathbb{R}$, (A, B) = -trAB.

We know more about the adjoint representation:

Lemma 2.1 Let G be a compact, connected matrix group. Then its adjoint action Ad on \mathfrak{g} has a compact, connected image. Furthermore, its kernel is given by

$$ker(Ad) = Z(G) = \{h \in G \mid hg = gh \; \forall g \in G\}.$$

3 Root Space Decomposition

Given a compact, connected Lie group G, let $T \subset G$ be a maximal torus with generator g_0 . Then the action of T on \mathfrak{g} is determined by $\operatorname{Ad}_{g_0} \in \operatorname{SO}(\dim(G))$. Indeed, we have

$$\operatorname{Ad}_{g_0} \sim \begin{cases} \operatorname{diag}(R(\theta_1), ..., R(\theta_m)), & \text{ if } \dim(G) \text{ is even} \\ \operatorname{diag}(R(\theta_1), ..., R(\theta_m), 1), & \text{ if } \dim(G) \text{ is odd} \end{cases}$$

for some natural number m and 2d rotation matrices R. For each k = 1, ..., m, define

$$\tilde{\gamma}_k \colon T \to \mathrm{SO}(2), \quad g_0^r \mapsto R(r\theta_k).$$

Then its derivative

$$\gamma_k \coloneqq D_{id} \tilde{\gamma}_k \colon \mathfrak{t} \to \mathbb{R}$$

defines a **root** of G with respect to T if γ_k is non-trivial. We define the corresponding **root space** $\mathfrak{g}(\pm \gamma_k) \subset \mathfrak{g}$ as the real equivalent of the complex space

$$\bigcap_{t \in \mathfrak{t}} \operatorname{Ker}(\operatorname{Ad}_{\exp(x)} - e^{i\gamma_k(x)}).$$

When γ is non-trivial, we have dim $\mathfrak{g}(\pm \gamma) = 2m_{\pm \gamma}$ for a natural number $m_{\pm \gamma}$ called the **multiplicity**. If we furthermore set

$$g(0) = \{ x \in \mathfrak{g} \mid \forall g \in T, \ Ad_g(x) = x \},\$$

then there is the following decomposition of \mathfrak{g} :

Theorem 3.1 Let G be a compact, connected Lie group with Lie algebra \mathfrak{g} . Then there is an \mathbb{R} -linear direct sum decomposition with respect to the inner product (\cdot, \cdot) ,

$$\mathfrak{g} = \bigoplus_{\pm \gamma \text{ root pair}} \mathfrak{g}(\pm \gamma) = \mathfrak{g}(0) \oplus \bigoplus_{\pm \gamma \text{ non-trivial root pair}} \mathfrak{g}(\pm \gamma).$$
(1)

The decomposition is called **root space decomposition** of g.

Remember the Weyl group $W_G(T) = N_G(T)/T$ acts on \mathfrak{t}^* by $gT \cdot \gamma(x) = \gamma(Ad_{g^{-1}}(x))$. If γ is a root, then so is $gT \cdot \gamma$. This gives us the following theorem:

Theorem 3.2 Let α , β be roots of G with respect to the maximal torus T. Then the following are true:

- 1. For non-trivial α and $w \in W_g(T)$, the multiplicities of ${}^{w}\alpha$ and α agree, i.e., $m_{\alpha w} = m_w$; in fact, these multiplicities are 1.
- For non-trivial α, the only roots which are non-zero multiples of α are ±α.
- 3. $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = \{0\}$ unless $\alpha + \beta$ is a root, and then $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = g_{\alpha+\beta}$ if $\alpha + \beta$ is non-trivial, while $\{0\} \neq [g_{\alpha},g_{-\alpha}] \subset \mathfrak{g}_{0}$.