1 The Adjoint Representation

Via derivation, the conjugation map $G \rightarrow G, h \mapsto g h g^{-1}$ induces a representation of a Lie group G and its Lie algebra $\mathfrak{g}:$

Lemma 1.1 (The Adjoint Representation of G) Let $G \subset$ $G L(n, \mathbb{K})$ be a matrix-group with lie-algebra \mathfrak{g}. Then the map

$$
A d: G \rightarrow G L(\mathfrak{g}), \quad A \mapsto A d_{A}
$$

with

$$
A d_{A}(B)=A B A^{-1}
$$

is a representation of G on its Lie-Algebra \mathfrak{g}.
Lemma 1.2 (The Adjoint Representation of $\mathfrak{g) ~ L e t ~} \mathfrak{g}$ be a Lie-Algebra. Then the map

$$
a d: \mathfrak{g} \rightarrow G L(\mathfrak{g}), \quad A \mapsto[A, \cdot]
$$

defines a representation of \mathfrak{g} on itself.
The adjoint representations are well behaved with the exponential-map, in the sense that

$$
\operatorname{Ad} \circ \exp =\exp \circ \mathrm{ad}
$$

2 Compact, Connected Lie Groups

Let G be a compact, connected Lie group. Then the adjoint action restricts to $S O(\operatorname{dim}(G))$:

Theorem 2.1 Let G be a compact, connected Lie group with Lie algebra \mathfrak{g}. Then, after choosing a suitable basis on \mathfrak{g}, the adjoint representations of G and \mathfrak{g} become

$$
A d: G \rightarrow S O(\operatorname{dim}(G)), \quad a d: \mathfrak{g} \rightarrow \mathfrak{s o}(\operatorname{dim}(G))
$$

respectively.

The proof uses that every compact Lie group can be embedded in a $U(n)$ for some $n \in \mathbb{N}$ after choosing a suitable basis. Said basis is orthonormal with respect to the Ad-invariant inner product $(\cdot, \cdot): \mathfrak{u}(n) \times \mathfrak{u}(n) \rightarrow \mathbb{R},(A, B)=-\operatorname{tr} A B$.

We know more about the adjoint representation:
Lemma 2.1 Let G be a compact, connected matrix group. Then its adjoint action $A d$ on \mathfrak{g} has a compact, connected image. Furthermore, its kernel is given by

$$
\operatorname{ker}(A d)=Z(G)=\{h \in G \mid h g=g h \forall g \in G\}
$$

3 Root Space Decomposition

Given a compact, connected Lie group G, let $T \subset G$ be a maximal torus with generator g_{0}. Then the action of T on \mathfrak{g} is determined by $\operatorname{Ad}_{g_{0}} \in \mathrm{SO}(\operatorname{dim}(G))$. Indeed, we have

$$
\operatorname{Ad}_{g_{0}} \sim \begin{cases}\operatorname{diag}\left(R\left(\theta_{1}\right), \ldots, R\left(\theta_{m}\right)\right), & \text { if } \operatorname{dim}(G) \text { is even } \\ \operatorname{diag}\left(R\left(\theta_{1}\right), \ldots, R\left(\theta_{m}\right), 1\right), & \text { if } \operatorname{dim}(G) \text { is odd }\end{cases}
$$

for some natural number m and $2 d$ rotation matrices R. For each $k=1, . ., m$, define

$$
\tilde{\gamma}_{k}: T \rightarrow \mathrm{SO}(2), \quad g_{0}^{r} \mapsto R\left(r \theta_{k}\right)
$$

Then its derivative

$$
\gamma_{k}:=D_{i d} \tilde{\gamma}_{k}: \mathfrak{t} \rightarrow \mathbb{R}
$$

defines a root of G with respect to T if γ_{k} is non-trivial. We define the corresponding root space $\mathfrak{g}\left(\pm \gamma_{k}\right) \subset \mathfrak{g}$ as the real equivalent of the complex space

$$
\bigcap_{t \in \mathfrak{t}} \operatorname{Ker}\left(\operatorname{Ad}_{\exp (x)}-e^{i \gamma_{k}(x)}\right)
$$

When γ is non-trivial, we have $\operatorname{dim} \mathfrak{g}(\pm \gamma)=2 m_{ \pm \gamma}$ for a natural number $m_{ \pm \gamma}$ called the multiplicity. If we furthermore set

$$
g(0)=\left\{x \in \mathfrak{g} \mid \forall g \in T, A d_{g}(x)=x\right\}
$$

then there is the following decomposition of \mathfrak{g} :
Theorem 3.1 Let G be a compact, connected Lie group with Lie algebra \mathfrak{g}. Then there is an \mathbb{R}-linear direct sum decomposition with respect to the inner product (\cdot, \cdot),

$$
\begin{equation*}
\mathfrak{g}=\bigoplus_{ \pm \gamma \text { root pair }} \mathfrak{g}(\pm \gamma)=\mathfrak{g}(0) \oplus \bigoplus_{ \pm \gamma \text { non-trivial root pair }} \mathfrak{g}(\pm \gamma) \tag{1}
\end{equation*}
$$

The decomposition is called root space decomposition of \mathfrak{g}.
Remember the Weyl group $W_{G}(T)=N_{G}(T) / T$ acts on \mathfrak{t}^{*} by $g T \cdot \gamma(x)=\gamma\left(A d_{g^{-1}}(x)\right)$. If γ is a root, then so is $g T \cdot \gamma$. This gives us the following theorem:

Theorem 3.2 Let α, β be roots of G with respect to the maximal torus T. Then the following are true:

1. For non-trivial α and $w \in W_{g}(T)$, the multiplicities of ${ }^{w} \alpha$ and α agree, i.e., $m_{\alpha_{w}}=m_{w}$; in fact, these multiplicities are 1.
2. For non-trivial α, the only roots which are non-zero multiples of α are $\pm \alpha$.
3. $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=\{0\}$ unless $\alpha+\beta$ is a root, and then $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=$ $g_{\alpha+\beta}$ if $\alpha+\beta$ is non-trivial, while $\{0\} \neq\left[g_{\alpha}, g_{-\alpha}\right] \subset \mathfrak{g}_{0}$.
